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Comparative Studies of Static Dipole Polarizabilities 
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The static dipole polarizabilities, c~ ~ have been studied for the ions O 2-, F-, 
Na § Mg 2+, CI-, K § and Ca 2§ in the crystals NaF, KF, NaCI, KC1, MgO and 
CaO. The starting zero-order wave functions have been generated using 
various exchange- and exchange-correlation potentials in order to study the 
effect of these potentials on o~ ~ The direct contribution to the dipole polariza- 
bility, ao ~ has been determined by the uncoupled Hartree-Fock method. 
Self-consistency effects have been included by the geometric approximation. 
The crystal potential is incorporated using the Watson sphere model. Good 
agreement between theoretical and experimental results are found for those 
self-consistent potentials which exclude self-interaction. 
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1. Introduction 

In the past 15 years potentials for many electron systems deduced from density 
functional theory have been successfully used for theoretical investigations of the 
electronic structure of atoms, molecules and solids [1-4]. Physical properties like 
atomic form factors [5], anti-shielding factors [6], ionization potentials [7], 
hyperflne interactions [8] and others have been investigated. On the basis of local 
potentials dipole polarizabilities ce D have been calculated within the X~-model 
for free ions and atoms [9-11]. In this paper the influence of the type of the 
electronic potential Vxc on c~ D is studied for ions in crystals for various exchange 
potentials, exchange-correlation potentials and potentials corrected for self- 
interaction, respectively. For those cases where Hartree-Fock (HF) data are 
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available, a D (Vx~) is compared with a D (HF). The direct contribution to a D, a D, 
the self-consistency correction a l  D and the crystal field effect of ions in different 
crystals have been investigated. The Watson sphere model [12] has been used for 
the crystal potential. The Watson sphere parameter has been chosen according 
to the Madelung potential of the crystal considered [13] and a D has been 
calculated for the ionic crystals NaF, KF, NaC1, KC1, MgO and CaO. 

2. Theory 

In this section the exchange-correlation and the external potentials used for the 
calculation of a D are reported. Moreover, the method of calculating the polariza- 
bility is outlined. 

2.1. Exchange-Correlation Potentials 

In density functional theory the electronic potential is usually written as [14, 15] 

Vet(r) = ' W x ( r ) +  Vc(r)+ f p(r) 
dr'  (1) 

where p (r) is the total electron density. 

Vx is the Hartree-Fock exchange potential in the Gdsp~ir-Kohn-Sham (GKS) 
model [14, 16] 

�9 ,-~ . 1/3 

and Vc is the correlation potential. A parametrized expression for Vc is given by 
Hedin and Lundquist [17] 

V~(r) = -0.0193 In (1 +39.17pl/3(r)). (3) 

The GKS exchange potential, Eq. (2), is by a factor of 2 smaller than the local 
exchange potential proposed by Slater in 1951, [18]. In the X~-method [1] a 
variable exchange parameter a is used: 

v~,,~ = ~o~ v~. (4) 

It is found that the X~ model predicts instability for stable negative free ions, 
originating from the wrong long range behaviour of the electronic potential [19]. 
Within the X~ model a far-off electron of an atomic system with N electrons 
"sees" the repulsion potential of N electrons (VN-potential) rather than that of 
N-1 electrons (Nu-a-potential). This is due to the self-interaction term in Vx,~ 
which does not exactly cancel the self-Coulomb term as in the HF scheme. The 
Ggtsp~r-Kohn-Sham potential for an electron i corrected for the self-interaction 
is given by Lindgren [20], 

v f fS (r )=_f  pi(r') [(3p(r))a/3 "6 ,1/3, -(;.,(r 0 J, 
where pi is the electron density of the electron considered. 
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This orbital dependent Hartree-Slater (HS) potential is successfully used by 
Lindgren and Ros4n [8] for the study of hyperfine interactions in atoms. Other 
exchange potentials corrected for self-interaction, which are also studied in this 
paper, are proposed by Cowan [21] and Gopinathan [22]. 

2.2. Crystal Potential 

The crystal potential of the ions considered is simulated by a hollow charged 
sphere (Watson sphere model [12]). The total charge q of the sphere is taken 
equal to the charge of the ion but opposite in sign. The radius R0 of the sphere 
is chosen in such a way that the model potential is equal to the Madelung potential 
at the nuclei sites [13]. In this model the crystal potential is given by 

Vw(a,  r) = { q/Ro(a ) for r<-Ro(a) 

q/r for r > Ro(a) '  

Ro(a) = a / M  

where a is the lattice constant of the crystal and M is the Madelung constant of 
the structure; M = 3.49513 for the crystals considered here. The dipole polariza- 
bility is calculated separately for the anions and the cations. 

Therefore, the overlap of the wave functions of the ions in the crystals [23] is not 
taken into account, a D for a crystal with lattice constant a is simply calculated 
by adding 

D D 
a O ( a )  = Ce anion ( a )  + Cecation ( a ) .  

2.3. Dipole Polarizability a ~ 

The method chosen for the calculation of a o is discussed elsewhere for the case 
of HF potentials [24]. The direct contribution to a D, ao D, is derived by the 
simplified uncoupled HF method [25]. From the determinantal wave functions 
~0+Sqb of the one-electron perturbed orbitals ~Pm+&Pm the first order self- 
consistency contribution to a o, a ~, is determined from the expectation value 

a 1D = -2(qb0 + 6qb I~1]~o + 6~)  (6) 

where Y{1, 

N N 
g~ = 2 v(r,~, r p ) - 2  vSCV; (7) 

p>rn m 

v(r~, rp) = 1 / I rm  - rpl; (8) 

is the difference in the actual electron-electron potential and the self consistent 
potential V scv used for the calculation of the zero order orbitals ~pm. 

In terms of  ~p.~ and &#~ a D is given by 

D o + 3 o ? ,  (9) = O~ 1 ,HF 

D where a 1,HF is equal to a l  D for the case of HF potentials and 8a~ is an additional 
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term for the case of non HF potentials: 

D 

m "< p 

-<acm,p  I l r ) - <,p ,pm l >] (1 o) 

P 

Higher order self-consistency contributions are included by the geometric 
approximation [26], 

O - 1  

D a0D(1 ~__~iD/ " (12) 
0 r  

It shall be pointed out, that Eq. (6) does not include all terms of first order in the 
perturbing electric field and of first order  in self-consistency, if V scF, Eq. (7), is 
a non HF potential. For non HF potentials terms from 6(P' should be included, 
where 8dp' is the first order perturbed wave function in o~1, Eq. (7). These terms 
have been neglected in the present work. They have not been studied in the 
literature for a D so far. However,  Ahmad and Newman [27] have shown by the 
l inked-cluster-many-body-perturbation theory for the case of the antishielding 
factor of 3+ Pr that these neglected terms amount to only 5% of the total first order 
self-consistency effects. 

3. Results 

In Table 1 the experimental and theoretical results for a ~ are listed for various 
ionic crystals. The agreement between a o (exp), a o (HF) and ce D (HS) is quite good 
taking into consideration the simplicity of the model crystal potential, the 
omission of correlation effects in the geometric approximation for o ,  the 
problem of covalency especially for the oxids, and obtaining the experimental 
results by means of the Clausius-Mossotti relation (see e.g. [31]). 

For the V N potentials a~  is always larger than the experimental value. It 
is found that the geometric approximation is less appropriate for VN-potentials 

N--1  than for V -potentials. Especially for negative free ions a D ( V  N) can be larger 
in size than a g ( V  N) and the geometric approximation is probably no suitable 
method for these systems. 

Recently Mahan [30] has studied a ~ for alkali halides using a crystal potential 
similar to the Madelung potential described here. The results of Mahan are given 
in the last column of Table 1. The differences between his and our results are 
discussed in the next section. 

4. Discussion 

Two aspects shall be considered in this section. Firstly the direct contribution to 
D D a , a0 ,  and the first order self-consistency correction a D shall be studied for C1-. 
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We have chosen CI- as an example because the differences in d o  for different 
potentials, see Table 1, are most pronounced for negative ions. Secondly the 
influence of the various crystal potentials on d/~ shall be discussed. 

In Table 2 o~~ -) is given for different V u- and vU-a-potentlals." The V u- 
potentials used here are the Hedin-Lundquist  (HL) potential [17], and potentials 
including Vx.~, Eq. (4), with d = 2 (Gasper-Kohn-Sham (GKS) potential [14, 16]) 
d = ~HF (Hart ree-Fock adapted (HFA) potential [32]) and d = 1 (Har t ree -Fock-  
Slater (HFS) potential [18]). 

For V u-~ potentials the results for the HF potential, the Hart ree-Slater  (HS) 
potential of Rosen and Lindgren [20, 8], the potential of Cowan [21] and the 
potential of Gopinathan [22] are chosen. It is found that the Cowan and 
Gopinathan potentials give nearly the same results for d/~. Calculating d z:' as a 
function of the exchange parameter  o~ in the Cowan or Gopinathan approach 
( d ~  G)), it is found that d = 0.5 gives results for d/9(C, G) which are close to 
the corresponding HF results. 

Considering first d0 ~ it can be seen from Table 2 that d ~  depends sensitively on 
the chosen exchange parameter  d. The results a~ (H F A ) ,  d~(HL) ,  do~ and 
o~(C,  G;  d =0.5)  are nearly equal, which means that the smooth attractive 
correlative potential Vc(HL), Eq. (3), has nearly the same effect as the increase 
of the exchange parameter  a in the X~-method from d = ~ to d = drIZ (=0.72325 
for C1) and the same effect as the exclusion of self repulsion, o~o~ o~0D(HL) 
and d o ~ (HS) are larger than d o ~  because the outermost orbitals of negative 
ions are slightly more diffuse in the HFA-,  HL-  and HS-approximations than in 

D the HF approach. As do ~ also all,HE is nearly the same for the methods given 
above, however, 6d ~ is quite different for the V N- and the Vu-a-potentials.  This 
is due to the self-energy terms in 6 d ~ ( p  = m in Eq. (11)). In contrast to the 
VN-~-potentials one gets a net self-energy term in 6d~ for the VN-potentials, 
which is positive in sign and which is the dominant contribution to a ~. Therefore,  
6a ~ (V N) and 6a o (VN-1)  are different in size and in sign. The differences in 6d 1 ~ 
cause quite different results for the total d o (last row in Table 2) gained from the 
geometric approximation. There is some doubt whether the self-consistency 
effects on d ~ are described correctly by the geometric approximation for V/v 
potentials. 

Next the results of Mahan [30], last column in Table 1, shall be discussed. For 
his calculations Mahan has taken an exchange-correlative potential without 
self-interaction. Because the correlation potential used by Mahan is a smooth 
attractive function like Eq. (3), his values for d D should be smaller than dD(HS), 
10 th column of Table 1, for which the potential Vc is omitted. However  Mahan 
has not included self-consistent effects in the calculation of a ~ and therefore 
d~  < d ~  does not hold for all alkali halides. As can be seen from 
Table 2 these self-consistent effects are very important for negative ions and d~ ~ 
decreases the total d ~ Therefore  the inclusion of self-consistent effects would 
lower d~  below do (HS)  and also below d~  for all alkali halides. 
It may be that a more realistic function for the electron correlation potential V~ 
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Table 3. Relative change of the dipole polarizability o for several 
ions as a function of the crystal potential of the crystals given in 
Table 1, e.g. for F-A V / V  = (VM(NaF) - VM(KF))/VM(NaF) and 
aa ~  o = (a aOnlon (NaF) - a aDnion (KF)) /a  aDnion (NaF), where Vm is 
the lattice potential 

AaD/a  D �9 100 a 

AV 
Ion - -  100 GKS HL  HS WC 

V 

Na § - 1 7 . 8  - 8 . 5  - 7 . 7  - 1 . 4  - 1 . 8  

K § - 1 5 . 0  - 9 . 2  - 7 . 9  - 2 . 9  - 0 . 9  

F -  13.4 22.2 18.8 11.2 10.1 

CI- 10.4 11.8 10.2 7.8 6.7 

0 2 -  12.3 34.1 30.2 23.5 

a GKS = Gfispf i r -Kohn-Sham potential; HL = Hedin-Lundquis t  
potential; H S = H a r t r e e - S l a t e r  potential; W C = s e m i e m p i r i c a l  
results of Wilson and Curtis [33]. 

has nodes as found for the helium atom [15]. However to investigate all aspects 
of correlative effects more quantitatively, the model for the crystal has to be 
improved simultaneously, because our results a o (HS), which exclude correlative 
effects, are already close to the experimental results. 

Finally in this section the influence of the crystal potential on a D shall be 
considered. Table 3 shows for different ions the percentage change of the lattice 
potential Vw and a~ and a~  for the crystals given in Table 1. As 
expected the change in a/9 is mostly pronounced for the weakly bonded electrons 
of 02-. The changes Aa/9/a ~ for the HS (and HF) procedure for the alkali halides 
are in agreement with semi empirical calculations of Wilson and Curtis [33] which 
are listed in Table 3, too. 

5. Conclusions 

From the investigations reported here it can be seen that: 
(a) The calculated values of a D depend strongly on the model chosen for the 
self-consistent potential; especially a D varies drastically as a function of the 
exchange parameter a. 
(b) The V N-exchange-correlative potentials lead to values a D, which are mostly 
larger than the corresponding Hartree-Fock (HF)- and experimental values. 
(c) Besides HF the Hartree-Slater (HS) approximation gives good results for a/9 
in ionic crystals. On the basis of the Watson sphere model the difference in 
aD(exp) and aD(HS) is less than 10% for the alkali halides. 
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